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Filling flows, cliff erosion and cleaning flows 
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The flows considered here are those where a container or confined region is being 
filled by a substantial flow of liquid. The case of especial interest is where the incoming 
flow fills a large part of the cross-section of the container, for example where a nearly 
full flowing conduit has one end suddenly closed and hence fills rapidly, or where a 
water wave propagates close to the under surface of a horizontal structure and then 
rapidly fills the available space. These flows are taken to be so rapid that gravity 
is unimportant and yet not so violent that compressibility effects become significant. 
Important features, such as the greatly enhanced pressures and a thin high-velocity 
return jet are evaluated. The calculated pressures are very significantly greater than 
those associated with the incoming flow velocity and can be especially large when 
there is little clearance between the flow and the container boundary. One of many 
possible applications is in the extension of cracks and openings in coastal cliffs and 
structures. The flows could also be relevant to estimating the forces on the underside 
of some marine structures. A simple two-dimensional irrotational free-surface solution 
is found for the flow, which is steady in a suitably moving frame of reference. 

Reversing the direction of one of these filling flows gives the case of a narrow 
high-speed jet which may be used to flush liquid out of cavities and containers. The 
optimum size of jet is calculated. 

1. Introduction 
This study is motivated by consideration of the violent motions that may ensue 

when a water wave impinges into a confined space on a cliff or a coastal structure. 
For simplicity a horizontal slot is considered in much of the discussion. If the solid 
surfaces are reasonably smooth a stream of water flows in, hits the far end and fills 
the available space. If this flow is relatively fast, jet like, and thin enough it can meet 
the far end, be turned around and shoot back out along the upper surface of the 
space. A similar flow is sometimes seen in the kitchen when full flow from a tap falls 
into an empty cup and is simply returned out of the cup when no dissipative breaking 
of the free surface occurs. We shall discuss the filling flow as being horizontal and 
any return flow as being along the top of the confining space although the flow 
configuration can be at any angle since gravity is ignored. Here we are particularly 
concerned with the case where there is no dissipation but the incoming flow fills 
so much of the space available that most of the flow contributes to filling whilst a 
smaller proportion returns along the top of the available space. We show that for 
small clearances the return flow is very small so that it may be reasonable to ignore it 
in many applications, in the same way as the small return jet in front of a hydrofoil 
is often ignored in theoretical studies. 

7 Present address: Department of Chemical Engineering, Univeristy of Leeds, Leeds LS2 9JT, UK. 
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There are some related flow problems. At one extreme there is the case of flow 
which completely fills a pipe. If this flow is suddenly stopped by a valve or other 
mechanism, the resulting pressure surge, or water hammer, leads to very high transient 
pressures that depend on the compressibility of the filling liquid and the elasticity of 
the containing walls. The major development of this topic was by Joukowski (1900) 
and it is now well covered in various textbooks. In this context the case we consider 
corresponds to a nearly horizontal pipe which is partly full of rapidly moving liquid 
which is suddenly stopped at a valve: the flow then becomes a filling flow. 

There is one two-dimensional solution including gravity which is due to Benjamin 
(1968). This is derived as an ‘emptying’ flow for the liquid between two horizontal 
planes, but, being inviscid, it can run in either direction and hence be interpreted 
as a filling flow. The free surface rises to the upper boundary, approaching it at 
an angle of n/3 to the horizontal. However, this is appropriate only for one single 
inflow/outflow velocity with Froude number 2, and the depth of liquid is just half 

can be considered as a gravity-free, overturning, version of the Benjamin flow. That 
is these flows are dominated by the liquids inertia. 

The primary idea for this work comes from studies of wave impact (Cooker & 
Peregrine 1990a,b, 1992) where it is found that very severe wave forces can occur 
when a nearly breaking wave meets a wall without any actual breaking or impact. 
The water at the wall accelerates violently upwards just in front of the near-vertical 
wave face. This motion we call ‘flip through‘. It has a maximum pressure shortly after 
the formation of a thin jet directed up the wall. These flows are fully described by an 
inviscid irrotational flow and Cooker (private communication) has noticed that near 
the time of maximum pressure the small region in which high pressure occurs is well 
modelled by a steady jet-like flow in a suitable moving reference frame (Cooker & 
Peregrine, in preparation). 

The analysis below describes the filling of the space between two horizontal planes, 
but has wider applications. For example, the flow may be used to describe the latter 
stages of filling of a container of any shape when the region of the fill level has 
cylindrical geometry; this might be extended to cases with gentle variations of the 
container’s geometry or slow variations in the filling flow. Further, the far end of 
the horizontal space may be open and it could be filled from both ends with similar 
flows; this may be more appropriate for considering pressures on the underside of 
the decks of some marine structures. 

The next section describes the relationship between the unsteady filling flow and a 
steady flow in a moving reference frame. Consideration of the conserved quantities 
giwes equations from which the main properties of the flow are readily found. These 
include the pressures that develop in the main body of the container and the peak 
pressure. In the steady flow this is at the stagnation point, and hence easy to evaluate. 

Section 3 discusses the filling flow in the context of coastal wave impacts. The 
following section gives a brief discussion of cleaning flows which correspond to the 
same flow solution but with all velocities reversed. 

the distance between the two horizontal boun d ing planes. The flows described below 

2. Transformation to a steady flow 
The container is described as the space between two horizontal planes distance 

H apart. This orientation is chosen for convenience of description since the flow is 
considered to be sufficiently fast that gravitational effects are negligible. Note, as may 
be seen from the results, that this does not necessarily imply that the incoming flow, 
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FIGURE 1. The configuration of the filling flow: (a )  on the stationary frame, for h = 0.4688, d = 0.18; 
( b )  in the moving reference frame where the flow is steady including the dividing streamline 
- - - - -  , for h = 0.7098,d = 0.025H. 

of depth h and velocity Vl, necessarily has a high Froude number, Vl/(gh)’ /2 ,  in the 
conventional sense, if the flow is nearly horizontal. Precise requirements depend more 
on the space over the filling flow and its orientation relative to gravity, as is discussed 
later in this section. Figure l(a) shows the configuration and the notation used. The 
thinner backflow has velocity V, and thickness d. The free surface is assumed to have 
a constant form and to be moving, as the space is filled, at a velocity U .  

Now, consider the flow in a reference frame moving with the free surface; figure 
l(b) shows the new flow. On the free surface Bernoulli’s equation gives that the 
velocity is constant, VO, say. The velocity in distant parts that are already filled is no 
longer zero but is U.  There must be a stagnation point on the upper rigid surface 
where the flow divides. 

The relative velocities between the two frames give us 

vo = v, - u = v1 + u. (1)  

(2) 

(3) 

Mass conservation, choosing units in which the liquid density is unity, gives 

U H  = Vo(h - d).  

Consideration of the momentum flux gives: 

U2H + P H  = Vih  + Vid, 

where P is the excess pressure in the filled portion of the space. (Note that using 
Benjamin’s terminology of ‘flow force’ too loosely, can lead to an error of sign in the 
right-hand side of this equation since the momentum flux is a tensor and does not 
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have the same character of direction as a vector, for example compare with tension in 
a string which is another one-dimensional tensor.) Using Bernoulli's equation gives: 

P = i(V,' - U2) .  (4) 
The natural specification of this problem is for H , h  and Vl to be given. It is then 
straightforward to deduce the other quantities from equations (1) to (4) with the 
results 

U = iVl (2k - 1)/(1 - k ) ,  ( 5 )  

(7) 

(8) 

(9) 

Vo = i V 1 / ( 1 -  k), (6) 

Vz = Vlk/( 1 - k), 

d = H (  1 - k)2, 

P = i V ? k / ( l  - k), 

where PO is the maximum pressure at the 'stagnation point', and k = ( h / H ) ' / 2 .  Since 
units can be chosen with H and Vl equal to unity, k, or h / H ,  is the single dimensionless 
parameter on which these flows depend. 

Note the occurrence of (1 -k) ;  when it becomes small, all these velocities and pres- 
sures become large, whilst d becomes very small. For example, for an inflow depth of 
h = 0.81H,  the return flow has thickness d = 0.0123, and return velocity V, = 9V1, 
the internal pressure is P = 9( V:) , and the maximum pressure is Po = 25( V f ) .  

The necessary conditions on flow parameters for the filling flow to be applicable 
for a reasonable time can now be assessed, for example, when the flow takes place in 
a finite-gravity environment with a component of gravity across the container such 
that the thin jet will detach from the upper wall. Jf the entering flow is horizontal, the 
trajectory of the motion is a parabola which in dimensionless coordinates is given by 

x2( 1 - k)2 
y=---- 2Fr2 k2 

where x and y are scaled with by H .  The Froude number Fr is defined as 
Fr2 = V ; / g H .  We need y < 1 - k2 to avoid interference with the incoming flow. The 
corresponding value of x is Fr[2  k( 1 + k ) / (  1 - k)]1/2, which should be large for the 
filling flow solution to have a reasonable duration following the initiation of the jet. 
That is we seek 

( 1  - k )  
2 k ( l +  k) '  

Fr2 9 

Therefore even with Fr = O(1) our solution can be useful if 1 - k is small enough. 
This criterion takes no account of air resistance which is significant if the jet breaks 
up into drops; but the general idea still holds. A somewhat different criterion is 
needed for a vertically oriented container, but for finite containers of moderate length 
the outflowing jet will often easily exit the container. 

The steady two-dimensional inviscid flows are found from the standard free- 
streamline theory; details are given in the Appendix. For the steady version, cor- 
responding to figure l(b), with origin at the stagnation point, the complex velocity 
potential is: 
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FIGURE 2. Pressure contours for d / H  = 0.05, Po = 2.5V;, contour interval: 0.lV;. 

where for simplicity units have been chosen such that H and Vn are both unity and 
where 

df w = -  
dz ’ 

[ = -  
1 - w ’  h 

and 

The free streamline is given by 5 = -iA for 0 < i < m. Consideration of the 
physically relevant part of the [-plane shows that the logarithms should be chosen 
with a branch cut in the sector n > B > z/2. Figures l(a) and l(b) show the free 
surface for two examples. The pressure field for d / H  = 0.05 is given in figure 2. 

It should be noted that d < h only for h > i H .  For smaller values of h the return 
flow given by the above solution is of greater thickness. For filling flows this is 
probably an irrelevant solution, since for a two-dimensional containing space with a 
concave end e.g. a vertical wall or a rounded end, there are solutions corresponding 
to the filling flow failing to fill the container since it simply follows round the end 
of the container to its upper surface and proceeds towards the exit, if travelling fast 
enough to avoid falling etc. 

Although the above analysis is for two-dimensional flows, the results (5)-(10) come 
from basic integral properties that are also applicable to three-dimensional flows such 
as occur in a pipe. The only change is that H ,  h and d should be interpreted as the 
cross-sectional areas of the pipe, the filling flow and the return flow respectively. The 
expressions for the velocities and pressures are unchanged, and k2 becomes the ratio 
of the cross-sectional area of the exit flow to the area of the incoming flow. A three- 
dimensional flow is unlikely to be as tidy as the two-dimensional case since even if the 
filling flow has a smooth free surface, for example because of the action of gravity, the 
return flow is likely to be distinctly non-uniform because of three-dimensional motion 
near the ‘stagnation point’ leading to significant internal flows within the return jet. 
In a round pipe it can be expected to initially converge, and then diverge. Again, this 
solution is likely to be most useful when the return jet carries little liquid. 
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There is of course another filling flow for which there is no return flow, where 
all the incoming fluid contributes to the filling with turbulent dissipation, as in a 
hydraulic jump. The system of equations is now much simpler. Relative velocity and 
mass conservation now give 

Vlh - Vlk2 
VO = V1 + U ,  Vok = U H ,  hence U = ___ - ~ 

H - h  1 - k 2 ’  

so comparison with equation ( 5 )  shows that the filling is quicker, as is obviously the 
case, since there is no return flow. Momentum conservation gives 

V12k2 
and thus P = ~ 

U2H2 
U 2 H  + P H  = Vo2h = - 

k ’  (1 - k2j’ 

This pressure is less than that of the non-dissipative flow, equation (91, for the 
appropriate range < k < 1. If a filling flow occurred in too long a channel it may 
be expected to turn into a dissipative flow of this sort. 

3. Cliff erosion 
The filling flows described above can cause significantly elevated pressure in a crack 

or cavity during such time as the container is being filled through a section where 
the above type of flow can occur. Direct wave impact against a wall can also give 
exceptionally high pressures, both in the flip-through case already mentioned and 
when small air-pockets are trapped against a wall (work in progress). Thus a crack 
in a cliff or the structure of a breakwater can be exposed to pressures that may 
cause damage. The problem is to assess how dangerous these effects are. A feature 
of the very high pressure that direct wave impact can cause is that the duration of 
the high pressure decreases as its magnitude increases. For the peak pressures that 
are measured in the laboratory, typical durations are a few milliseconds, and a few 
hundredths of a second for coastal waves. There is the opportunity for significantly 
longer durations of high pressure from filling flows if a crack has appropriate length. 
Further, the very high pressures of direct impact only occur over a small area of the 
wall. Thus high filling pressures could be more common than high direct pressures at 
a given location. A worst case is for the high-speed jet from a flip-through to enter a 
crack and give even higher pressures. 

The damage potential of these high pressures depends on the amount of work that 
they can do in loosening, fracturing or moving material. The simplest case could be 
where a slot underneath a block of stone fills with sufficient pressure at some instant 
to raise the block. The force on the surface of a crack can easily be estimated for a 
filling flow. The pressure in the filled portion of the crack, P ,  acts over a length that 
increases with speed U .  If the crack length is L, then the maximum force is PL.  If 
the total filling time, L / U ,  is short the total impulse, 

L2 k 
P - = V  

221 l L 2 2 ( 2 k -  1)’ 

may be a more relevant quantity. 
The above discussion ignores the extra pressure in the neighbourhood of the moving 

stagnation point. The analytic solution, (11) and (12j, in the moving reference frame 
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k 
FIGURE 3.  Plot of the stagnation-point force function f ( k ) .  

permits description of this pressure by an ‘extra’ force, defined as 

Fo = L I p d x  - P C m d x ,  

where this finite quantity is stated in a divergent manner in order to clarify its origin. 
The analytic solution gives 

where 

f (k )  = (1  - k)2 log( 1 - k )  + k2 log k - log(2k - 1) - (1 - 2k + 2k2)  log 2. (18) 

This force can be put in context as follows. The effective length over which the 
This function is shown in figure 3. 

stagnation pressure Po, acts is 

8 

Po n: 
- _  Fo - -Hk(l-  8 

k ) f ( k )  = ; (hd)’”f(k) .  

Alternatively, the force corresponds to the filled pressure, P ,  acting over an extra 
length of 

Fo 2H 
P n :  
- = -f(k). 

A simple force balance indicates that the forces on the two bounding planes are equal 
and opposite despite the markedly differing pressure distributions. 

Another case is where the space being filled has some air trapped at the closed 
end: a likely circumstance is sketched in figure 4. Work is done by the filling flow in 
compressing the air. If the air has relatively small volume then it will be compressed 
to the same filling pressure, P ,  as the water. If the air volume is rclatively large so 
that its natural period of oscillation is similar to the filling time, the filling becomes 
unsteady since the pressure and volume of air at the end of the filling space are 
related. Thus the analysis of 52 must be amended. If the flow is considered to be 
quasi-steady a suitably amended version of equations (1)-(3) can be set up to allow an 
average velocity at the closed end of W = (i/A)(dG/dt) where A is the cross-sectional 
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FIGURE 4. A filling flow with trapped air. 

area of the filling passage. G is the trapped gas volume and decreases as the pressure 
P increases. Together with the pressure-volume relationship for the trapped gas this 
gives equations for the flow’s evolution. Both the gas and water could permeate 
cracks in a cliff or marine structure. Clearly a filling flow can help to augment, or 
create, the jets of spray that can be seen from blow-holes at some coastal points. 

It seems unlikely that this mechanism of creating high pressures would give much 
improvement in the useful energy from wave power devices, since to compress a 
significant volume of air to, say, one or two atmospheres above atmospheric would 
need relatively rapid filling velocity U along the filling portion which would not be 
consistent with large changes of volume in the trapped air. 

4. Cleaning flows 
Reversal of the flow direction in the above non-dissipative filling flow gives a 

high-speed jet clearing out a container. Typically, a high speed ‘cleaning’ jet is applied 
with no attempt to optimize the approach used since in most circumstances there is 
little need for optimization. However, should there be a need to use a cleaning jet to 
its best effect then the above results provide useful formulae. In this case we may be 
given the velocity V2 of the jet, and, perhaps, can choose the amount, d, of the jet 
that is permitted to enter the container to be cleaned. Then equation ( 7 )  gives the 
velocity of efflux of liquid, including that which goes in. More usefully, the net rate 
of efflux of liquid from the container, in terms of V, and d is 

m( 1 - 2m) d , where m2 = -. 
H 

Vj(h - d )  = V2H 
1 - m  

For given V, and H ,  this expression has a maximum when 

1 . d 3  
r n = l - -  1.e. - -  - - - ,,h = 0.084; 

$’ H 2  

thus the most effective size of jet to clean out a container has a cross-sectional area 
approximately equal to one twelth of the cross-section of the container. 

5. Conclusion 
The flows described here are likely to find useful application as simple models of 

a range of confined flows involving both gas and liquid. Flow in pipes of gas-liquid 
mixtures is widespread, in oil and gas extraction and conveyance, in steam raising 
for a multitude of purposes, and in large- and small-scale hydraulic works ranging 
from hydro-electric schemes to sewage disposal. Indeed it is not uncommon to see the 
basic conservation equations being used in hydraulic jumps and in their extensions in 
two-phase flows. The distinctive feature here is that we permit the high-speed return 
flow, and are specially interested in the high pressures that are generated. There is 
plenty of scope for experiments to compare with the results given here. 
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Both the simple integral solution and the detailed analytical solution can be used in 
various ways. For example, the case k = 0.9 detailed above can form an excellent basis 
for testing the accuracy of computer programs for unsteady irrotational free-surface 
flows. 

Support is acknowledged from SERC grant GR/G21032, from EPSRC grant 
GR/H96836 and from the European Commission Directorate General for Science, 
Research and Development under MAST contract MAS2-CT92-0027. 

Appendix. The steady two-dimensional inviscid flow 
The incoming flow in figure l(b) is due to a source at x = +co whilst the outgoing 

thin jet in the same figure is due to a sink at x = fco. A sink at x = -m generates 
a flow with velocity U. The hodograph plane w = u - iu  can be easily constructed: 
the flow emanates from a source at w = -1 and disappears at the sinks located at 
w = -(h - d) and w = $1 (for convenience we choose units such that H and VO 
are both unity). The lower half of the circle IwI = 1 is the free streamline. The 
transformation 

l + w  [ = l + i q = -  
1 - w  

maps the sink located at w = $1 of the (u,u)-plane to a sink at infinity in the [-plane, 
whilst the source at w = -1 is mapped to a source located at the origin of the (-plane. 
The point w = -(h - d )  of the hodograph plane is mapped to the point 

1 - ( h  - d )  
= 1 + ( h  - d )  

of the <-plane. The negative imaginary (-axis is now the free streamline and the 
velocity potential can easily be found. It is the potential of a flow due to a source at 
( = 0, a sink at ( = (0 and the image of this sink at 5 = - lo :  

where M and f l  are the strengths of the source and sinks respectively. Furthermore, 
the point = 1 must be a stagnation point in the [-plane also. Therefore, 

28 
1 - (02 

=0, or a =  - 

Consideration of the flow out of the source of strength CI and into the sink of strength 
/? shows that one quarter the flow out of the source of strength E corresponds to the 
flow h, and half the flow into the sink of strength /? corresponds to the flow h - d. 
Thus 

2Bh a = -  
h - d ’  

and equation (A2), with the definition of [o gives 

( h  - d)2  - 2(h - d )  + 1 - 4d = 0, 

the solution of which is equation (8), as already found from the conservation of mass 
and momentum. These result in 

h - d  . and B =  -. 2h 
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Equation (Al) can now be differentiated with respect to ( and with 

df - dfdz  dz 
d l  d z d t = W s ’  
- - _- 

dz 2 ( l+ - =.lo 
d l  i(i - t00)(5 + lo?’ 

On integration, 

(A3? 

(A41 

The integration constant c can be found from the boundary condition that at 5 = 1, 
z = 0. We note that as (0 -+ 1, c becomes infinite and the free streamline moves 
towards z = +a. 

Z - C  

a 
- log 5 + #o + log(l - l o )  + ; ( l o  - 1)’ log(t + to ) .  

Note added in proof: The two-dimensional solution described by equations (11) and 
(12) is also given, in a different conext, in Tuck & Dixon (1989) and used in Korobkin 
(1995) as a local solution. 
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